This post outlines a pragmatic roadmap to evolve data contracts in an analytics platform. It favors incremental adoption over big‑bang rewrites and ties directly to operational needs: stability, speed, and safety.
1) Why contracts (and why now) Control schema drift and reduce breakage. Enable fast feedback (pre‑prod contract tests) and safer evolution. Improve ownership clarity and auditability. 2) Contract primitives Interface = table/view/topic + schema + semantics + SLA. Versioned schema in source control (YAML/JSON) with description and constraints. Example: minimal YAML for a dataset contract. name: carrier_performance version: 1.2.0 owner: analytics.eng@acme.example schema: - name: carrier_id type: string constraints: [not_null] - name: ds type: date constraints: [not_null] - name: on_time_pct type: decimal(5,2) constraints: [range: {min: 0, max: 100}] - name: loads type: int constraints: [not_null, gte: 0] slas: freshness: {max_lag_hours: 6} completeness: {min_rows: 1000} 3) Evolution rules SemVer: MAJOR for breaking, MINOR for additive, PATCH for docs/constraints. Deprecation windows and dual‑publishing for breaking changes. Compatibility gate in CI (producer and consumer tests). # Pseudo‑CI checks contract check producer --path contracts/carrier_performance.yaml --against current-schema.json contract check consumers --dataset carrier_performance --min-version 1.1.0 4) Validation patterns (Spark/Delta) Type/shape validation in ETL; catalog registration only on pass. Constraint checks materialized to a dq_issue table. # PySpark example: enforce contract types and simple constraints from pyspark.sql import functions as F, types as T def validate(df): expected = T.StructType([ T.StructField("carrier_id", T.StringType(), False), T.StructField("ds", T.DateType(), False), T.StructField("on_time_pct", T.DecimalType(5,2), True), T.StructField("loads", T.IntegerType(), False), ]) casted = df.select( F.col("carrier_id").cast("string").alias("carrier_id"), F.to_date("ds").alias("ds"), F.col("on_time_pct").cast("decimal(5,2)").alias("on_time_pct"), F.col("loads").cast("int").alias("loads"), ) dq = [] dq.append(F.count(F.when(F.col("carrier_id").isNull(), 1)).alias("carrier_id_null")) dq.append(F.count(F.when(F.col("ds").isNull(), 1)).alias("ds_null")) dq_df = casted.select(*dq) return casted, dq_df 5) Contract tests for consumers Consumers pin to a minimum compatible version and verify invariants. E.g., downstream view expects on_time_pct present and within 0–100. -- dbt / SQL test snippet select count(*) as violations from {{ ref('carrier_performance') }} where on_time_pct is null or on_time_pct < 0 or on_time_pct > 100 6) Governance & catalog Register contracts in a catalog (DataHub/OpenMetadata) with lineage and ownership. Emit events on contract version changes and SLA breaches. 7) Rollout plan Phase 1: Document schemas for 3 high‑impact datasets; add read‑only validation. Phase 2: Enforce contract in CI for producers; add consumer tests. Phase 3: Introduce SemVer and deprecation workflows; visibility via catalog. Phase 4: Automate change review and impact analysis with lineage. 8) Reference diagram flowchart TB A[Producer ETL] --> B[(Contract YAML)] B --> C{CI checks} C -->|pass| D[Publish to Curated] C -->|fail| E[Block & Report] D --> F[Consumers] F --> G[Contract Tests] D --> H[Catalog / Lineage] Pragmatic takeaway: contracts lower entropy and raise change velocity. Start small, enforce where it matters, and expand coverage with clear ownership.