Privacy-Aware Pipelines: PII Detection, Redaction, and Governance at Scale

This post shares a practical architecture for privacy-aware data processing on Spark/Delta with PII discovery, redaction, and auditability. It reflects patterns used to replace external DLP APIs with in‑house pipelines. 1) Objectives Discover PII across semi/unstructured data (text/JSON). Redact or tokenize with policy-driven transformations. Preserve utility for analytics and ensure auditability. 2) Architecture Overview flowchart TB A[Landing / Bronze] --> B{PII Scanner} B -->|classified| C[Redaction / Tokenization] C --> D[Delta Curated] B -->|no PII| D D --> E[Access Zones / Views] E --> F[Analytics / BI] D --> G[Audit Tables] 3) PII Detection (Presidio + Spark NLP) Use Presidio analyzers for entities (EMAIL, PHONE, CREDIT_CARD, PERSON, etc.). Complement with domain regex and Spark NLP for names/locations if needed. Confidence thresholds and context words to reduce false positives. from presidio_analyzer import AnalyzerEngine from presidio_anonymizer import AnonymizerEngine analyzer = AnalyzerEngine() anonymizer = AnonymizerEngine() text = "Contact John at john.doe@example.com or +1-555-123-4567" results = analyzer.analyze(text=text, language='en') redacted = anonymizer.anonymize(text=text, anonymize_entities=[{"type": r.entity_type, "new_value": "<REDACTED>"} for r in results]).text print(redacted) 4) Spark Integration Pattern UDF wrapper calling Presidio per row (for small/medium texts); for large docs, batch per partition. Structured outputs: keep original column, plus redacted_text and pii_entities (array of structs). Deterministic tokenization for referential integrity: hash with salt for IDs. from pyspark.sql import functions as F, types as T def redact_text(text: str) -> str: # call analyzer/anonymizer; return redacted text return text # placeholder redact_udf = F.udf(redact_text, T.StringType()) df_out = ( df_in .withColumn("redacted_text", redact_udf(F.col("text"))) ) 5) Governance & Audit Write detections to pii_detection_log with columns: id, entity_type, start, end, confidence, doc_id, ds. Track policy decisions (mask/tokenize/pass) and version the policy set. Access via views: analysts see redacted columns by default; elevated roles can request reveal with approvals. 6) Quality & Monitoring Metrics: percent docs with PII, entity counts by type, redaction coverage. Drift detection on entity distributions to catch model/pattern degradation. Sampling UI for manual review (Streamlit or simple web). 7) Operational Considerations Throughput: consider broadcasted dictionaries/context words; avoid heavy Python UDFs where possible (Scala UDFs or native libs faster). Cost: cache pre-processing, process incrementally, skip re-redaction on unchanged docs (idempotence). Security: store salts/keys in secret scopes; lock down raw zones. 8) Minimal Policy Example version: 0.3.0 entities: - type: EMAIL action: redact - type: PHONE_NUMBER action: redact - type: PERSON action: tokenize token_salt_secret: keyvault://pii-tokens/person-salt 9) Rollout Plan Pilot on one high‑value dataset (support tickets or transcripts). Add governance hooks (policy version table, audit writes, views). Expand coverage by domain; tune thresholds; add sampling UI. Pragmatic takeaway: privacy-aware pipelines protect users and your org while keeping data useful. Bake in policy, audit, and performance from day one.

2025-09-16 · 3 min · rokorolev

SafetyCultureToDatabricks

This project is a data integration tool that collects information from the SafetyCulture API v1.0 and inserts it into Databricks Delta tables. It is designed to automate the extraction, transformation, and loading (ETL) of SafetyCulture data for analytics and reporting in Databricks. Project Link: https://rokorolev.gitlab.io/safety-culture-to-databricks/

2025-09-04 · 1 min · rokorolev