Data Contract Evolution: From Ad Hoc Schemas to Governed Interfaces

This post outlines a pragmatic roadmap to evolve data contracts in an analytics platform. It favors incremental adoption over big‑bang rewrites and ties directly to operational needs: stability, speed, and safety. 1) Why contracts (and why now) Control schema drift and reduce breakage. Enable fast feedback (pre‑prod contract tests) and safer evolution. Improve ownership clarity and auditability. 2) Contract primitives Interface = table/view/topic + schema + semantics + SLA. Versioned schema in source control (YAML/JSON) with description and constraints. Example: minimal YAML for a dataset contract. name: carrier_performance version: 1.2.0 owner: analytics.eng@acme.example schema: - name: carrier_id type: string constraints: [not_null] - name: ds type: date constraints: [not_null] - name: on_time_pct type: decimal(5,2) constraints: [range: {min: 0, max: 100}] - name: loads type: int constraints: [not_null, gte: 0] slas: freshness: {max_lag_hours: 6} completeness: {min_rows: 1000} 3) Evolution rules SemVer: MAJOR for breaking, MINOR for additive, PATCH for docs/constraints. Deprecation windows and dual‑publishing for breaking changes. Compatibility gate in CI (producer and consumer tests). # Pseudo‑CI checks contract check producer --path contracts/carrier_performance.yaml --against current-schema.json contract check consumers --dataset carrier_performance --min-version 1.1.0 4) Validation patterns (Spark/Delta) Type/shape validation in ETL; catalog registration only on pass. Constraint checks materialized to a dq_issue table. # PySpark example: enforce contract types and simple constraints from pyspark.sql import functions as F, types as T def validate(df): expected = T.StructType([ T.StructField("carrier_id", T.StringType(), False), T.StructField("ds", T.DateType(), False), T.StructField("on_time_pct", T.DecimalType(5,2), True), T.StructField("loads", T.IntegerType(), False), ]) casted = df.select( F.col("carrier_id").cast("string").alias("carrier_id"), F.to_date("ds").alias("ds"), F.col("on_time_pct").cast("decimal(5,2)").alias("on_time_pct"), F.col("loads").cast("int").alias("loads"), ) dq = [] dq.append(F.count(F.when(F.col("carrier_id").isNull(), 1)).alias("carrier_id_null")) dq.append(F.count(F.when(F.col("ds").isNull(), 1)).alias("ds_null")) dq_df = casted.select(*dq) return casted, dq_df 5) Contract tests for consumers Consumers pin to a minimum compatible version and verify invariants. E.g., downstream view expects on_time_pct present and within 0–100. -- dbt / SQL test snippet select count(*) as violations from {{ ref('carrier_performance') }} where on_time_pct is null or on_time_pct < 0 or on_time_pct > 100 6) Governance & catalog Register contracts in a catalog (DataHub/OpenMetadata) with lineage and ownership. Emit events on contract version changes and SLA breaches. 7) Rollout plan Phase 1: Document schemas for 3 high‑impact datasets; add read‑only validation. Phase 2: Enforce contract in CI for producers; add consumer tests. Phase 3: Introduce SemVer and deprecation workflows; visibility via catalog. Phase 4: Automate change review and impact analysis with lineage. 8) Reference diagram flowchart TB A[Producer ETL] --> B[(Contract YAML)] B --> C{CI checks} C -->|pass| D[Publish to Curated] C -->|fail| E[Block & Report] D --> F[Consumers] F --> G[Contract Tests] D --> H[Catalog / Lineage] Pragmatic takeaway: contracts lower entropy and raise change velocity. Start small, enforce where it matters, and expand coverage with clear ownership.

2025-09-16 · 3 min · rokorolev

Data & Analytics Technology Timeline 2025

A compact, opinionated snapshot of the data & advanced analytics ecosystem as of 2025. For each domain: (a) first public emergence, (b) broad adoption / peak phase, (c) current 2025 posture. Legend: Emerging: gaining traction / rapid iteration Active: healthy, broadly adopted, still improving Mature Plateau: stable, incremental change; little green‑field excitement Declining / Legacy: little new adoption; maintenance only Core Data & Big Data Engines Technology First Adoption Peak Window 2025 Status Notes Hadoop (HDFS/MapReduce) 2006 2009–2015 Declining / Legacy Replaced by cloud object storage + engines YARN 2012 2014–2018 Mature Plateau Still underpins legacy Hadoop clusters Hive (SQL on Hadoop) 2008 2012–2017 Mature Plateau Supplanted by Spark SQL / Trino in new builds Pig 2008 2011–2014 Declining Educational / migration only HBase 2008 2013–2017 Niche Legacy Large installs persist Impala 2012 2015–2018 Stable / Niche Limited net-new Presto / Trino 2013 / 2020 rename 2016–2023 Active Federated SQL + lakehouse query Parquet 2013 2015–now Dominant De‑facto columnar format ORC 2013 2015–2018 Mature Plateau Hive-heavy shops Apache Spark 2009 (early), 2014 1.x 2015–now Active Core batch + streaming engine Ray 2019 2022–now Emerging / Active Unified Python distributed workloads Dask 2016 2019–now Active Niche Python analytics / scientific Streaming & Event Processing Technology First Peak Window 2025 Status Notes Kafka 2011 2015–now Active Backbone for streams + CDC Kafka Connect 2015 2018–now Active Connector ecosystem standard Schema Registry 2016 2018–now Active Avro/Protobuf evolution control Flume 2010 2013–2016 Declining Displaced by Kafka connectors Storm 2011 2013–2016 Declining Replaced by Flink / Kafka Streams Flink 2011 2018–now Active Event-time & low-latency streaming Spark Streaming (DStreams) 2012 2014–2018 Legacy Replaced by Structured Streaming Structured Streaming 2016 2018–now Active Unified micro-batch streaming Orchestration & Workflow Technology First Peak Window 2025 Status Notes Oozie 2010 2012–2016 Legacy Legacy Hadoop workflow Airflow 2015 2018–now Active Batch / DAG orchestration leader Control-M 1990s Long-running Mature Plateau Enterprise batch mainstay Lakehouse & Storage Technology / Concept First Peak Window 2025 Status Notes AWS S3 2006 2010–now Active Foundational object store Azure Blob 2008 2013–now Active Core Azure storage GCS 2010 2015–now Active Google cloud object storage Databricks (platform) 2013 2016–now Expanding Consolidated lakehouse workloads Delta Lake 2019 OSS 2020–now High Growth ACID tables + time travel “Lakehouse” Term ~2020 2021–now Mainstream Marketing crystallized architecture Governance / Catalog / Lineage Technology First Peak Window 2025 Status Notes Apache Atlas 2015 2017–2021 Mature / Declining Hadoop-centric Amundsen 2019 2020–2023 Stable Slower vs DataHub DataHub 2020 2022–now Active / Growing Modern metadata / lineage platform ML / MLOps / Modeling Technology / Concept First Peak Window 2025 Status Notes MLflow 2018 2019–now Active Experiment + model registry Feature Store Concept ~2018 2020–now Mature Emerging Feast et al. normalization PyTorch 2016 2018–now Active / Dominant Research → production TensorFlow 2015 2016–2021 peak Mature Plateau Still strong, steadier share PyMC 2003 2015–now Active Bayesian workflows NumPy / SciPy / Pandas 2001 / 2006 / 2008 2012–now Core Foundational ecosystem Ray (ML scaling) 2019 2022–now Growth RL / distributed training LLM / Vector DB Layering 2022 2023–now High Growth Retrieval + augmentation patterns Academic reference: Longstaff–Schwartz (2001) → remains core for American-style options & real asset valuation. ...

2025-09-04 · 5 min · rokorolev